亿万先生·MR(中国)首页官网登录

亿万先生动态

智能视频监控分析系统的优势与应用剖解

  • 时间:2013-04-02
  • 来源:

  亿万先生软件(来源:中关村在线 作者:不详)

  智能视频监控技术源于计算机视觉技术,作为人工智能研究的一个分支,是一项新兴的安防技术,有着广阔的发展前景。经过了几年的技术研究与市场开拓,智能视频分析对人们来说已不再陌生,智能分析行业应用逐渐走上正轨。

  智能视频监控的主要优势

  快速的反应时间:毫秒级的报警触发反应时间;

  更有效的监视:保安人员只需要注意相关信息;

  强大的数据检索和分析功能:能提供快速的反应时间和调查时间。

  运动检测是基础

  绝大多数智能视频分析都是基于运动目标检测技术,即首先智能分析系统能准确地完成对运动目标的检测,将运动物体与图像背景有效分离,提取出运动目标信息。

  从计算机视觉的实际应用上来看,运动目标检测与识别、分析所面临主要挑战和需解决问题可以归结为三个方面,即算法的鲁棒性、准确性、实时性。

  鲁棒性

  鲁棒性就是系统的健壮性,用以表征控制系统对特性或参数摄动的不敏感性。运动目标检测算法的鲁棒性是能够在各种环境条件下实现对运动目标持续、稳定的检测、分析和识别。

  影响算法鲁棒性的最主要原因有如下几项:目标状态的改变、环境光照的变化、部分遮挡引起的目标不规则变形和全部遮挡引起的运动目标暂时消失。

  准确性

  运动目标检测和识别针对不同应用情况,其检测识别率不同,几乎无法实现100%检测成功,即存在误检和漏检情况。由于实际的监控场景环境复杂、千变万化,其中存在大量噪声和干扰情况,通过算法的优化可提高一定的检测准确率,同时往往只能根据实际需求,在误检率(虚警率)和漏检率(漏警率)之间寻求平衡折中。

  实时性

  一个实用的智能视频监控系统,必须具备能够对视频图像序列进行实时处理的能力。由于对视频动态图像的处理方法是建立在二维数字信号的处理基础上,所处理的对象包含巨大的数据量和信息量,要求算法不能计算太复杂,必须快速、实时。对于实时分析预警任务,计算复杂度是至关重要的,这样才能把系统更多的资源分配给更高级的任务。而这其中实时性和鲁棒性又常常是矛盾的,如何寻求平衡发展是技术的关键。

  智能视频分析系统的应用

  多年从事安防与视频监控系统集成和产品研发的公司在进一步成熟传统监控技术的同时,将智能分析引入视频监控中。目前,已将视频的智能分析运用到电力行业、平安城市等的监控系统中。

  电力行业的变电站视频监控系统

  目前电力行业中的视频监控系统遇到异常情况一般都是进行事后处理,往往为时已晚。因此为防范于未然,可在变电站内在一定范围内进行周界防范,当发现可疑人物入侵或跨入警戒线时,要求监控系统能够自动检测入侵目标,并标识其入侵轨迹,同时发出报警通知管理人员前去处理。

  将周界监控范围内所有的禁止入侵的区域设置为防区。这样当有入侵者侵入防范区域时就会被智能监控系统自动锁定并标识出行动轨迹,同时发出报警。这里的报警分前端和后端两种,前端报警可通过声光报警器来实现,入侵者触发报警时,监控系统会发出警报声警告入侵者,并可打开强光灯使入侵者无法藏身;后端报警在系统软件平台应用来实现,通过管理人员对入侵行为进行处理,这样可以做到“事前防范”,避免损失。

  平安城市监控系统

  对平安城市监控系统来说,其一方面主要体现在一些重要的路段、社区、公共场所等,以通过视频监控方式对出现的可疑目标进行监控报警。另一方面则集中在监控系统的后期运营管理过程中,以通过视频分析技术检测前端摄像头常见故障与视频图像质量问题,实现监控系统的有效维护。

  平安城市视频监控需求复杂、系统容量庞大,不仅涉及到交通车辆、人员聚集监控及违规报警,违章停车等智能交通的监控,还涉及到小区里可疑人物的出现和逗留徘徊的报警等等;甚至要结合物联网及云计算技术,构建海量视频存储与内容分析检索系统。




网站首页
亿万先生